Introduction

Used to solve subarray related problems that asks about the sum of the subarrays.

Features

Allows for constant time sum queries on various ranges.

Pseudocode for Subarray Sum

def subarray_sum(arr: List[int], target: int) -> List[int]:
	prefix_sum = {0: 0}
	cur_sum = 0
	for i in range(len(arr)):
		cur_sum += arr[i]
		# looking for a prefix that when removed from sequence adds up to target
		complement = cur_sum - target
		if complement in prefix_sum:
			return [prefix_sum[complement], i + 1]
		prefix_sum[cur_sum] = i + 1 # Stores current sum as prefix sum key and the index of the start of the sub array if prefix is dropped

Intuition

Time Complexity

For the above problem

  • time complexity becomes O(n)
  • space complexity becomes O(n)

Follow up example

def subarray_sum_total(arr: List[int], target: int) -> int:
    # WRITE YOUR BRILLIANT CODE HERE
    prefix_sum = {0 : 1} # inital count of 1 subarray
    cur_sum = 0
    total = 0
    for i in range(len(arr)):
        cur_sum += arr[i]
        complement = cur_sum - target
        if complement in prefix_sum:
            total += prefix_sum[complement] # found sum so looks at the total count of prefix sums that existed before
        prefix_sum[cur_sum] = prefix_sum.get(cur_sum, 0) + 1 # adding a new subarray possibility if the cur_sum matches a prefix
        
    return total